New collaborative work on lipid corona formation around engineered nanomaterials published in Chem

Engineered nanoparticles hold not only promise for technological innovation but also possible unforeseen risks for organisms upon inadvertent release into the environment. Here, mechanistic insight is provided regarding spontaneous lipid corona formation from nanomaterial-membrane interactions that can be used to improve control over nano-bio interactions and to help understand why some nanomaterial-ligand combinations are detrimental to organisms but others are not. We identify ion pairing between the lipid head groups and certain ligands coating nanoparticles having diameters below 10 nm as a necessary condition for the formation of fragmented lipid coronas that engender new properties (ζ potential, stickiness, and composition) departing from the original particle formulation. These insights help predict the impact that the increasingly widespread use of engineered nanomaterials has on their fate once they enter the food chain, which many of them may eventually do.
See the news story here.